

MODULE SPECIFICATION

Module Ti	itle:	Structures Ana	lysis		Leve		5		edit lue:	20)
Module code:		ENG52J	Is this a new module?	yes		Code of module being replaced:		-	ENG552		
Cost Centre: GAME			JACS3 cod	JACS3 code: H142							
Trimester(s) in which to be 1, 2			1, 2	With effect from: September			er 17	r 17			
School: Applied Science, Computing & Engineering				lodule eader:		Dr. Olaf	Nies	troj			
Scheduled learning and teaching hours							60 hrs				
Guided independent study				140 hrs							
Placement				0 hrs							
Module duration (total hours)							200 hrs				
Programme(s) in which to be offered					Core	e	Option				
BEng (Hons) Aeronautical & Mechanical Engineering				\checkmark							
BEng (Hons) Mechanical Manufacturing					✓ ✓						
BEng (Hons) Applied Product Design BEng (Hons) Automotive Engineering					\checkmark						
BEng (Hons) Renewable and Sustainable Engineering					• √						
BEng (Hons) Aerospace and Modern Optics					✓						

Pre-requisites	
None	

Office use only	
Initial approval February 17	
APSC approval of modification	Version 1
Have any derogations received Academic Board approval?	Yes ✓ No 🗆

Module Aims

To support the development of the student in the following areas:

- To develop an understanding and an overall appreciation of the processes that lead to developing an appropriate structure to satisfy given requirements. Design considerations include the assessment: of bucking of struts in structures with various end conditions; of beams deriving equations relating to the Engineer's Theory of Bending and also bending in symmetric and asymmetric structures; leading on to the consideration of shear stress distributions in beams and introducing the concept of shear flows;
- Develop the theory of linear elastic fracture mechanics along with concepts of plane stress and plane strain at the crack-tip;
- To develop an understanding of fast fracture leading onto fatigue with S/N diagrams and crack growth laws to determine component life are considered;
- To gain a basic theoretical and practical understanding of the technique of finite elements with knowledge of how to apply the technique to simple problems.

Intended Learning Outcomes

Key skills for employability

- KS1 Written, oral and media communication skills
- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At	the end of this module, students will be able to	Key Skills		
1	Relate an overall design philosophy to the design of structures	KS1	KS4	
		KS10	KS6	
2	Use a range of analysis techniques, namely: buckling analysis on simple struts, E.T.B. on symmetric and asymmetric structures, flexural and shear stress distributions on beams subjected to combinations of loads	KS3		
		KS9		
		KS10		

MODULE SPECIFICATION

3	Ascertain where failure might occur, including the conditions that might produce the failure and evaluate the relevance of	KS3	
	results	KS6	KS5
4		KS1	
	Simulate with an appropriately specified finite element model a very simple structure and be able to interpret the results. An appreciation of whether the model offers a converged solution should be gained	KS4	
		KS6	
		KS9	

Derogations

A derogation from regulations has been approved for this programme which means that whilst the pass mark is 40% overall, each element of assessment (where there is more than one assessment) requires a minimum mark of 30%.

Assessment:

<u>Assessment One:</u> is an examination covering outcomes 1 to 3. It is an unseen time-constrained examination.

Assessment Two: is by means of a written assignment covering outcome 4.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1,2,3	Examination	60	2hrs	
2	4	Report	40		2000

Learning and Teaching Strategies:

Detailed printed lecture notes provided for the student will allow the optimisation of lecture time, with good opportunity for self-study and tutorials. The module will also contain practical laboratory based exercises supported by introductory lectures and demonstrations.

The finite element work will be primarily computer laboratory based with practical exercises supported by introductory lectures and demonstrations. The emphasis will be directed towards on hand-on learning via a commercial software package. It is probable that a problem-based learning exercise will provide the basis for Assessment One.

Syllabus outline:

- **Structural Instability:** Classical theory considering Euler buckling of perfect columns. Equations giving theoretical critical buckling loads for given end conditions. The concept of equivalent strut length. Limitations of the theory of Euler buckling.
- Engineers Theory of Bending: Formal derivation and assumptions of equations of ETB are made with a revision of the concepts of 1st, 2nd moments of area, including parallel axis theorem. The concept of product moment of area is introduced. ETB is extended to the derivation of the curvature-bending moment relationship.
- Asymmetric Bending: The theory and method of identifying the location of the principal axes of an unsymmetrical section. Magnitude of the principal and product moments of
 - area and their orientation. Skew loading applied to the section and the position/orientation of the neutral axes. Stresses within a section.
- Shear Stress: The shear stress distribution due to bending for a given section. Thinwalled sections. Position of the shear centre for open thin-walled sections. The concept of shear flow.
- **Fatigue:** The concept of a Griffith crack and Linear Elastic Fracture Mechanics. Fast fracture, strain energy release rate, stress intensity factors. Conditions of plane stress and plane strain at the crack tip. Crack growth laws such as Paris and their use in crack growth rate predictions.
- **Finite Element Analysis:** Introductory lecture(s) into the technique of finite elements. An initial experience with proprietary finite element software package such as ANSYS and its use to solve (a) simple problem(s).

Bibliography:

Essential reading

Case, J. Et al. (1999) Strength of Materials and Structures, 4th ed., London: Arnold

Hibbeler, R.C. (2014) Mechanics of Materials, 9th ed., Singapore: Pearson

Other indicative reading

Megson, T.H.G. (2013) *Aircraft Structures for Engineering Students*, 5th ed., Boston: Elsevier

Ashby, M.F. (2011) *Materials Selection in Mechanical Design*, 4th ed., Burlington: Butterworth-Heinemann

Zienkiewicz, O.C., Taylor, R.L. (2013) *The Finite Element Method: Its Basis and Fundamentals*, 7th ed., Amsterdam: Elsevier